Here are functions that are evaluated to their x.
Find f(x) = 2x^2 - 4x + 5 if x = -5 f(-5) = 2(-5)^2 - 4(-5) + 5 f(-5) = 50 + 20 + 5 f(-5) = 75
x =1.5 if f(x) = √x + 1 f(1.5) = √1.5 + 1 f(1.5) = √2.5
f(x) = ⌊x⌋ + 3 if x = 2.9 f(2.9) = ⌊2.9⌋ + 3 f(2.9) = 2 + 3 f(2.9) = 5
f(x) = {2x + 1 if 0<x<=3} {⌈x⌉ - 5 if x>3} a. x = 4.1 b. x = 2 a. f(4.1) = ⌈4.1⌉ - 5 b. f(2) = 2(2) + 1 = 5 - 5 = 4 + 1 = 0 = 5
f(x) = | x - 7 | if x = 3 f(3) = |3 - 7| f(3) = |-4| f(3) = 4 note: | x | is an absolute value, where the number inside will always be positive.
f(x) = 2x + 1/x - 7 if x = 7 f(7) = 2(7) + 1/7 -7 f(7) = 14 + 1/0 f(7) = 15/0 f(7) = undefined note: if the denominator is 0, the answer will be undefined.
f(x) = 2x^2 + 4x - 1/3x^2 - x - 7 if x = -2 f(-2) = 2(-2)^2 + 4(-2) - 1/3(-2)^2 -(-2)-7 f(-2) = 2(4) - 6 - 1/3(4) + 2 - 7 f(-2) = 8 - 8 - 1/-12 + 2 _ 7 f(-2) = -1/7
f(x) = x + 4 if x = x + 7 f(x + 7) = x + 7 + 4 f(x + 7) = x + 11
f(x) = x^2 + 4x - 9 if x = ab f(ab) = ab^2 + 4(ab) - 9 f(ab) = a^2b^2 + 4ab - 9
Comments