top of page
Search

Operations Of Functions

Writer's picture: Sean Melvein A. VecinaSean Melvein A. Vecina

We can evaluate two functions together if we apply the operations of mathematics.

Let f and g be the function.


Addition

f(x) = 2x^2 - 5x + 12

g(x) = 3x^2 + 7x -10


formula: (f + g) (x) = f(x) + g(x)

(f + g) (x) = 2x^2 - 5x + 12 + 3x^2 + 7x -10

(f + g) (x) = 5x^2 + 2x - 2


Subtraction

f(x) = 2x^2 - 5x + 12

g(x) = 3x^2 + 7x -10


formula: (f - g) (x) = f(x) + (-g(x))

(f + g) (x) = 2x^2 - 5x + 12 - (3x^2 + 7x -10)

(f + g) (x) = 2x^2 - 5x + 12 + (-3x^2 - 7x + 10)

(f + g) (x) = 2x^2 - 12x + 22


Multiplication f(x) = 2x + 5

g(x) = x^2 - 1


formula: (f x g) (x) = (f(x)) (g(x))

(f x g) (x) = (2x + 5) (x^2 - 1)

(f x g) (x) = 2x^3 - 2x + 5x^2 - 5

(f x g) (x) = 2x^3 + 5x^2 - 2x - 5


Division f(x) = 6x^2 - x -12

g(x) = 2x - 3


formula: (f/g) (x) = f(x)/g(x)

(f/g) (x) = 6x^2 - x -12/2x - 3

(f/g) (x) = (2x - 3) (3x + 4)/2x - 3

cancel 2x - 3 since there are both like terms

(f/g) (x) = 3x + 4


More References:

Addition:

Subtraction:



Multiplication:


Division:



4 views0 comments

Recent Posts

See All

Comentários


Subscribe Form

Thanks for submitting!

09613607575

©2020 by Sean Melvein A. Vecina. Proudly created with Wix.com

bottom of page